Personal tools
map
Click on the banner to return to the class reference home page.
map
Container
- Summary
- Data Type and Member Function Indexes
- Synopsis
- Description
- Interface
- Constructors and Destructors
- Allocator
- Iterators
- Member Operators
- Allocator
- Member Functions
- Non-member Operators
- Specialized Algorithms
- Example
- Warning
- See Also
Summary
An associative container providing access to non-key values using unique keys. A map supports bidirectional iterators.
Data Type and Member Function Indexes
(exclusive of constructors and destructors)
Synopsis
#include <map> template <class Key, class T, class Compare = less<Key> class Allocator = allocator<T> > class map;
Description
map <Key, T, Compare, Allocator> provides fast access to stored values of type T which are indexed by unique keys of type Key. The default operation for key comparison is the < operator.
map provides bidirectional iterators that point to an instance of pair<const Key x, T y> where x is the key and y is the stored value associated with that key. The definition of map provides a typedef to this pair called value_type.
The types used for both the template parameters Key and T must provide the following (where T is the type, t is a value of T and u is a const value of T):
Copy constructors - T(t) and T(u) Destructor - t.~T() Address of - &t and &u yielding T* and const T* respectively Assignment - t = a where a is a (possibly const) value of T
The type used for the Compare template parameter must satisfy the requirements for binary functions.
Interface
template <class Key, class T, class Compare = less<Key> class Allocator = allocator<T> > class map { public: // types typedef Key key_type; typedef T mapped_type; typedef pair<const Key, T> value_type; typedef Compare key_compare; typedef Allocator allocator_type; typename reference; typename const_reference; typename iterator; typename const_iterator; typename size_type; typename difference_type; typename reverse_iterator; typename const_reverse_iterator; class value_compare : public binary_function<value_type, value_type, bool> { friend class map<Key, T, Compare, Allocator>; public : bool operator() (const value_type&, const value_type&) const; }; // Construct/Copy/Destroy explicit map (const Compare& = Compare(), const Allocator& = Allocator ()); template <class InputIterator> map (InputIterator, InputIterator, const Compare& = Compare(), const Allocator& = Allocator ()); map (const map<Key, T, Compare, Allocator>&); ~map(); map<Key, T, Compare, Allocator>& operator= (const map<Key, T, Compare, Allocator>&); allocator_type get_allocator () const; // Iterators iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // Capacity bool empty() const; size_type size() const; size_type max_size() const; // Element Access mapped_type& operator[] (const key_type&); const mapped_type& operator[] (const key_type&) const; // Modifiers pair<iterator, bool> insert (const value_type&); iterator insert (iterator, const value_type&); template <class InputIterator> void insert (InputIterator, InputIterator); iterator erase (iterator); size_type erase (const key_type&); iterator erase (iterator, iterator); void swap (map<Key, T, Compare, Allocator>&); // Observers key_compare key_comp() const; value_compare value_comp() const; // Map operations iterator find (const key_value&); const_iterator find (const key_value&) const; size_type count (const key_type&) const; iterator lower_bound (const key_type&); const_iterator lower_bound (const key_type&) const; iterator upper_bound (const key_type&); const_iterator upper_bound (const key_type&) const; pair<iterator, iterator> equal_range (const key_type&); pair<const_iterator, const_iterator> equal_range (const key_type&) const; }; // Non-member Map Operators template <class Key, class T, class Compare, class Allocator> bool operator== (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); template <class Key, class T, class Compare, class Allocator> bool operator!= (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); template <class Key, class T, class Compare, class Allocator> bool operator< (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); template <class Key, class T, class Compare, class Allocator> bool operator> (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); template <class Key, class T, class Compare, class Allocator> bool operator<= (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); template <class Key, class T, class Compare, class Allocator> bool operator>= (const map<Key, T, Compare, Allocator>&, const map<Key, T, Compare, Allocator>&); // Specialized Algorithms template <class Key, class T, class Compare, class Allocator> void swap (map<*Key,T,Compare,Allocator>&, map<Key,T,Compare,Allocator>&);
Constructors and Destructors
explicit map(const Compare& comp = Compare(), const Allocator& alloc = Allocator());
Default constructor. Constructs an empty map that will use the relation comp to order keys, if it is supplied. The map will use the allocator alloc for all storage management.
template <class InputIterator> map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& alloc = Allocator());
Constructs a map containing values in the range [first, last). Creation of the new map is only guaranteed to succeed if the iterators first and last return values of type pair<class Key, class Value> and all values of Key in the range[first, last) are unique. The map will use the relation comp to order keys, and the allocator alloc for all storage management.
map(const map<Key,T,Compare,Allocator>& x);
Copy constructor. Creates a new map by copying all pairs of key and value from x.
~map();
The destructor. Releases any allocated memory for this map.
Allocator
allocator_type get_allocator() const;
Returns a copy of the allocator used by self for storage management.
Iterators
iterator begin() ;
Returns an iterator pointing to the first element stored in the map. "First" is defined by the map's comparison operator, Compare.
const_iterator begin() const;
Returns a const_iterator pointing to the first element stored in the map.
iterator end() ;
Returns an iterator pointing to the last element stored in the map, i.e., the off-the-end value.
const_iterator end() const;
Returns a const_iterator pointing to the last element stored in the map.
reverse_iterator rbegin();
Returns a reverse_iterator pointing to the first element stored in the map. "First" is defined by the map's comparison operator, Compare.
const_reverse_iterator rbegin() const;
Returns a const_reverse_iterator pointing to the first element stored in the map.
reverse_iterator rend() ;
Returns a reverse_iterator pointing to the last element stored in the map, i.e., the off-the-end value.
const_reverse_iterator rend() const;
Returns a const_reverse_iterator pointing to the last element stored in the map.
Member Operators
map<Key, T, Compare, Allocator>& operator=(const map<Key, T, Compare, Allocator>& x);
Assignment. Replaces the contents of *this with a copy of the map x.
mapped_type& operator[](const key_type& x);
If an element with the key x exists in the map, then a reference to its associated value will be returned. Otherwise the pair x,T() will be inserted into the map and a reference to the default object T() will be returned.
Allocator
allocator_type get_allocator() const;
Returns a copy of the allocator used by self for storage management.
Member Functions
void clear();
Erases all elements from the self.
size_type count(const key_type& x) const;
Returns a 1 if a value with the key x exists in the map, otherwise returns a 0.
bool empty() const;
Returns true if the map is empty, false otherwise.
pair<iterator, iterator> equal_range (const key_type& x);
Returns the pair, (lower_bound(x), upper_bound(x)).
pair<const_iterator,const_iterator> equal_range (const key_type& x) const;
Returns the pair, (lower_bound(x), upper_bound(x)).
iterator erase(iterator position);
Deletes the map element pointed to by the iterator position. Returns an iterator pointing to the element following the deleted element, or end() if the deleted item was the last one in this list.
iterator erase(iterator first, iterator last);
Providing the iterators first and last point to the same map and last is reachable from first, all elements in the range (first, last) will be deleted from the map. Returns an iterator pointing to the element following the last deleted element, or end() if there were no elements after the deleted range.
size_type erase(const key_type& x);
Deletes the element with the key value x from the map, if one exists. Returns 1 if x existed in the map, 0 otherwise.
iterator find(const key_type& x);
Searches the map for a pair with the key value x and returns an iterator to that pair if it is found. If such a pair is not found the value end() is returned.
const_iterator find(const key_type& x) const;
Same as find above but returns a const_iterator.
pair<iterator, bool> insert(const value_type& x); iterator insert(iterator position, const value_type& x);
If a value_type with the same key as x is not present in the map, then x is inserted into the map. Otherwise, the pair is not inserted. A position may be supplied as a hint regarding where to do the insertion. If the insertion may be done right after position then it takes amortized constant time. Otherwise it will take O(log N) time.
template <class InputIterator> void insert(InputIterator first, InputIterator last);
Copies of each element in the range [first, last) which possess a unique key, one not already in the map, will be inserted into the map. The iterators first and last must return values of type pair<T1,T2>. This operation takes approximately O(N*log(size()+N)) time.
key_compare key_comp() const;
Returns a function object capable of comparing key values using the comparison operation, Compare, of the current map.
iterator lower_bound(const key_type& x);
Returns a reference to the first entry with a key greater than or equal to x.
const_iterator lower_bound(const key_type& x) const;
Same as lower_bound above but returns a const_iterator.
size_type max_size() const;
Returns the maximum possible size of the map. This size is only constrained by the number of unique keys which can be represented by the type Key.
size_type size() const;
Returns the number of elements in the map.
void swap(map<Key, T, Compare, Allocator>& x);
Swaps the contents of the map x with the current map, *this.
iterator upper_bound(const key_type& x);
Returns a reference to the first entry with a key less than or equal to x.
const_iterator upper_bound(const key_type& x) const;
Same as upper_bound above but returns a const_iterator.
value_compare value_comp() const;
Returns a function object capable of comparing pair<const Key, T> values using the comparison operation, Compare, of the current map. This function is identical to key_comp for sets.
Non-member Operators
template <class Key, class T, class Compare, class Allocator> bool operator==(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns true if all elements in x are element-wise equal to all elements in y, using (T::operator==). Otherwise it returns false.
template <class Key, class T, class Compare, class Allocator> bool operator!=(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns !(x==y).
template <class Key, class T, class Compare, class Allocator> bool operator<(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns true if x is lexicographically less than y. Otherwise, it returns false.
template <class Key, class T, class Compare, class Allocator> bool operator>(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns y < x.
template <class Key, class T, class Compare, class Allocator> bool operator<=(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns !(y < x).
template <class Key, class T, class Compare, class Allocator> bool operator>=(const map<Key, T, Compare, Allocator>& x, const map<Key, T, Compare, Allocator>& y);
Returns !(x < y).
Specialized Algorithms
template <class Key, class T, class Compare, class Allocator> void swap(map<Key, T, Compare, Allocator>& a, map<Key, T, Compare, Allocator>& b);
Efficiently swaps the contents of a and b.
Example
// // map.cpp // #include <string> #include <map> #include <iostream.h> typedef map<string, int, less<string> > months_type; // Print out a pair template <class First, class Second> ostream& operator<<(ostream& out, const pair<First,Second> & p) { cout << p.first << " has " << p.second << " days"; return out; } // Print out a map ostream& operator<<(ostream& out, const months_type & l) { copy(l.begin(),l.end(), ostream_iterator <months_type::value_type,char>(cout,"\n")); return out; } int main(void) { // create a map of months and the number of days // in the month months_type months; typedef months_type::value_type value_type; // Put the months in the multimap months.insert(value_type(string("January"), 31)); months.insert(value_type(string("February"), 28)); months.insert(value_type(string("February"), 29)); months.insert(value_type(string("March"), 31)); months.insert(value_type(string("April"), 30)); months.insert(value_type(string("May"), 31)); months.insert(value_type(string("June"), 30)); months.insert(value_type(string("July"), 31)); months.insert(value_type(string("August"), 31)); months.insert(value_type(string("September"), 30)); months.insert(value_type(string("October"), 31)); months.insert(value_type(string("November"), 30)); months.insert(value_type(string("December"), 31)); // print out the months // Second February is not present cout << months << endl; // Find the Number of days in June months_type::iterator p = months.find(string("June")); // print out the number of days in June if (p != months.end()) cout << endl << *p << endl; return 0; } Output : April has 30 days August has 31 days December has 31 days February has 28 days January has 31 days July has 31 days June has 30 days March has 31 days May has 31 days November has 30 days October has 31 days September has 30 days
Warning
Member function templates are used in all containers provided by the Standard Template Library. An example of this feature is the constructor for map<Key,T,Compare,Allocator> that takes two templated iterators:
template <class InputIterator> map (InputIterator, InputIterator, const Compare& = Compare(), const Allocator& = Allocator());
map also has an insert function of this type. These functions, when not restricted by compiler limitations, allow you to use any type of input iterator as arguments. For compilers that do not support this feature, we provide substitute functions that allow you to use an iterator obtained from the same type of container as the one you are constructing (or calling a member function on), or you can use a pointer to the type of element you have in the container.
For example, if your compiler does not support member function templates, you can construct a map in the following two ways:
map<int, int, less<int> >::value_type intarray[10]; map<int, int, less<int> > first_map(intarray, intarray + 10); map<int, int, less<int> > second_map(first_map.begin(), first_map.end());
But not this way:
map<long, long, less<long> > long_map(first_map.begin(), first_map.end());
Since the long_map and first_map are not the same type.
Also, many compilers do not support default template arguments. If your compiler is one of these, you need to always supply the Compare template argument and the Allocator template argument. For instance, you'll have to write:
map<int, int, less<int>, allocator<int> >
instead of:
map<int, int>
See Also
allocator, Containers, Iterators, multimap
©Copyright 1996, Rogue Wave Software, Inc.